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SUMMARY 
The time evolution of finite amplitude axisymmetric perturbations (Taylor cells) to the purely azimuthal, 
viscoelastic, cylindrical Couette flow was numerically simulated. Two time integration numerical methods 
were developed, both based on a pseudospectral spatial approximation of the variables, efficiently imple- 
mented using fast Poisson solvers and optimal filtering routines. The first method, applicable for finite Re 
numbers, is based on a time-splitting integration with the divergence-free condition enforced through an 
influence matrix technique. The second one, is based on a semi-implicit time integration of the constitutive 
equation with both the continuity and the momentum equations enforced as constraints. Stability results for 
an upper convected Maxwell fluid were obtained for the supercritical bifurcations, either steady or 
time-periodic, developed after the onset of instabilities in the primary flow. At small elasticity values, 
E = De/Re, the time integration of finite amplitude disturbances confirms the stability of the single branch of 
steady Taylor cells. At intermediate E values the rotating wave family of time-periodic solutions developed at 
the onset of instability is stable, whereas the standing wave is found to be unstable. At high E values, and in 
particular for the limit of creeping flow ( E =  a), the present study shows that the rotating wave family is 
unstable and the standing (radial) wave is stable, in agreement with previous finite-element investigations. It 
is thus shown that spectral techniques provide a robust and computationally efficient method for the 
simulation of complex, non-linear, time-dependent viscoelastic flows. 

KEY WORDS Spectral collocation method Influence matrix Viscoelastic Taylor-Couette flow Hopf bifurca- 
tions Rotating and standing wave. 

1. INTRODUCTION 

In this paper we pursue a numerical study of the dynamics of finite-amplitude, axisymmetric 
disturbances in the viscoelastic flow between two independently rotating, infinitely long concen- 
tric cylinders. The full system of equations is solved as an initial boundary value problem using 
a pseudospectral spatial discretization. Most of the earlier analyses on the viscoelastic 
Taylor-Couette problem were restricted to infinitesimal perturbations (linear stability analysis’). 
Only our study and the one by Northey et al.’ investigate the evolution of finite-value amplitude 
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disturbances to the axisymmetric, viscoelastic Taylor-Couette problem by resorting to the 
numerical solution of the relevant time-dependent equations. However, for the viscous (Newton- 
ian) Taylor-Couette flow problem, several studies have been reported in the literature over the 
last 30 years (see references immediately below) in which the development and evolution of finite 
amplitude perturbations have been numerically investigated. 

With the advent of computers in the mid-l960s, the numerical solution of the full time- 
dependent, non-linear, Taylor-Couette problem for a Newtonian viscous fluid became feasible. 
The first numerical method that investigators used was finite differences. Some early research was 
performed by Capriz et ~ l . , ~  who used finite difference approximations in both the radial and the 
axial directions to solve the axisymmetric viscous flow. Although the discretizations used were 
not fine enough to converge to a satisfactory accuracy and their code encountered numerical 
instabilities, they were able to simulate supercritical phenomena. Another early work was that of 
Meyer: who used an explicit time-dependent code to study the development and evolution of 
axisymmetric vortices. Later, he combined a Fourier expansion in the azimuthal direction with 
finite difference approximations in the radial and axial directions in order to simulate wavy 
vortices5 Alonso and Macagno6 adopted an implicit time-dependent scheme for the study of the 
axisymmetric flow. de Roquefort and Grillaud’ used upwind differencing for the approximation 
of the convective terms and an implicit time integration with fractional time steps to stabilize the 
finite difference method. 

During the last decade, spectral and mixed spectral/finite difference methods have emerged as 
a viable alternative to finite differences for the simulation of the non-linear flow problems. 
Extending Meyer’s early a t t e m ~ t , ~  Meyer-Spasche and Keller’ used Fourier expansions in the 
axial direction, together with finite difference in the radial one to solve the steady-state, axisym- 
metric Navier-Stokes equations for the Taylor-Couette flow. Moser et a1.’ adopted spectral 
expansions in all three directions, to solve for both axisymmetric and wavy vortices. One problem 
associated with the time-integration of incompressible Navier-Stokes equations, as pointed out 
by several a u t h o r ~ , ~ O - ~ ~  is that the time-derivatives for the velocity involve the pressure, 
improper evaluation of which leads to violation of the incompressibility constraint. Among 
others, two partially implicit approaches were suggested to overcome this problem: a fractional 
step method”, l7  and a time-splitting/influence matrix scheme.14-16 The influence matrix 
approach (in this case called Green’s function method) was also followed by M a r c ~ s ’ ~ , ’ ~  in the 
most comprehensive work in the numerical simulation of Newtonian Taylor-Couette flow. 

The time-splitting name, used to describe the influence matrix scheme mentioned above, is not 
really very descriptive and might cause confusion. The integration is not split in time as in 
Runge-Kutta or in the fractional step method; rather, the variables are updated in several stages. 
In the first stage, the velocity is updated due to the inertia terms in the momentum equation using 
an explicit linear multistep method. The new pressure is calculated in the second stage by solving 
a Poisson equation so that the new velocity vector, obtained in the third stage, is divergence free. 
The final velocity is obtained by implicitly integrating the (linear) viscous terms of the momentum 
equation in the third and last stage. 

The Dirichlet boundary conditions for the pressure evaluation at the second stage are obtained 
using an influence (capacitance) matrix technique obtained through the imposition of the 
divergence-free velocity constraint on the solid boundary. These boundary conditions guarantee 
the divergence-free character of the velocity field everywhere in the flow domain14 and the 
compatibility of the discretized equations to the governing equations of the problem (momentum 
and ~ontinuity).’~ The linear equations described by the influence matrix represent non-local 
compatibility conditions for the boundary values of the pressure. Similar equations are recovered 
from the discretization of the integral equations which are alternatively proposed in order to 
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enforce compatibility of the pressure boundary conditions with the incompressibility constraint 
in non-fractional-step methods of integration of the momentum equations.1s*2’ 

Previous applications of the above-mentioned time-splitting/influence matrix method were 
limited to high Re number Newtonian flows where the time dependency of the flow is dominated 
by the (non-linear) convective terms in the momentum  equation^.'^. 16,25*26 In the present work 
the time-splitting scheme is extended to apply for a generalized momentum equation where there 
is an additional contribution to the stress tensor due to the flow viscoelasticity. The time- 
evolution for this additional flow variable is also evaluated semi-implicitly. There are important 
applications involving high Re viscoelastic flows (such as drag reduction”) where the scheme 
outlined above is directly applicable. However, most applications of importance to industrial 
manufacturing processes (like extrusion) involve high De but very small Re typically less 
than lo-’. Thus, for the latter applications, a new algorithm appropriate for the inertialess regime 
of the governing equations is developed in this paper. In it, the generalized momentum equations 
(i.e. involving a viscoelastic stress contribution) are considered in the limit of Re = 0 as a spatial 
constraint to the stress evolution in time dictated by a separate constitutive equation. In this 
approach, the handling of the momentum equation with respect to the stress variables exactly 
parallels that of the continuity equation with respect to the velocity in the limit of zero 
compressibility. 

Alternatively to the primitive variable (velocity-pressure) formulation of the time-split- 
ting/influence matrix method, a streamfunction-vorticity representation can be used where the 
influence matrix equations impose compatibility conditions on the boundary values for the 
vorticity which originate from the no-slip conditions for the velocity.21 The presence of non-local 
compatibility conditions in both formalisms, as well as the same number of Poisson (or Helm- 
holtz) equations that are required to be solved for every time step, make the computational 
workloads corresponding to either approach comparable. For illustration purposes, as well as in 
keeping with the previous trends, we used a primary variable formalism in our non-zero Re 
applications and a streamfunction-vorticity formation in our inertialess simulations. However, it 
should be emphasized that in principle either formalism can be used in the construction of either 
non-zero or zero Re algorithms. 

The zero Re algorithm, based on a streamfunction-vorticity formalism, results in the solution 
of an inhomogeneous biharmonic problem. Its numerical stability turned out to be comparable, 
and in fact superior, to that of the non-zero Re method. For identical spatial discretizations 
between simulations using the inertial and inertialess algorithms, a time-step 50 times larger 
could be used with the second as compared with the first method. For the same inertialess 
(creeping) flow regime, Northey et al.’ have also developed, concurrently with this work, a fully 
implicit finite element formulation which has allowed them to calculate steady time-periodic 
viscoelastic flows corresponding to the standing wave pattern setting in after the onset of 
instability. However, although the implicit scheme of their work allows for a larger time step, it 
also requires a computationally very expensive solution of a large set of non-linear equations. For 
a discretization that is uniform in r and z (N x N points), the implicit scheme requires a per 
time-step workload which is proportional to N4 (the discretization matrix corresponding to 
the finite-element method having a sparse structure) instead of a workload associated with our 
proposed method, proportional to N 3  (see also Sections 3.2 and 4.1). 

The fact that in either of the above algorithms, selective terms in the governing equations are 
treated implicitly and the rest explicitly with respect to time leads to a time integration scheme 
which is as stable as it could have been without ever having to solve anything more than 
a Poisson or Helmholtz equation. Furthermore, the terms for which an explicit integration would 
have imposed the most severe restrictions to the size of the time step, such as the pressure and 
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viscous terms, are handled implicitly. The success of this spectral scheme is related to the 
above-mentioned features which, in conjunction with the use of fast Poisson-Helmholtz solvers, 
allow for a computationally efficient update of the flow variables without imposing excessive 
stability restrictions on the time-step size. Using this technique, Marcus2s,26 was able to calculate 
several stable axisymmetric Taylor-vortex equilibria and non-axisymmetric wavy-vortex flows 
corresponding to one travelling wave for a Newtonian viscous fluid. One of the objectives of this 
work is to extend the numerical simulations into the viscoelastic, time-dependent regime, based 
on the idea of time-splitting integration and pseudospectral, spatial approximations under both 
inertial and inertialess conditions. Very recently, a similar approach was followed by Phillips and 
S ~ l i m a n , ~  in the solution of the inertial viscoelastic driven-cavity flow. 

we reported the linear stability analysis and the calculation of the 
secondary family branches corresponding to the purely azimuthal viscoelastic flow between two 
independently rotating, infinitely long, concentric cylinders (Taylor-Couette flow). Usually, the 
information supplied from this approach is sufficient to determine the stability of the secondary 
flow setting in after the onset of instability, as is the case for example at high Re and low De when 
the resulting secondary flow is steady. Under these circumstances, bifurcation theory3 1,32 
maintains that the secondary family is stable if the bifurcation is supercritical (exchange of 
stabilities with the primary family). However, when a Hopf bifurcation occurs, as is the case at 
moderate and high elasticity numbers ( E  = De/Re 2 O( l)), the presence of symmetry in the problem 
causes the bifurcation to be doubly degenerate. As a result, several solution families develop 
corresponding to two different patterns: the standing waves with an axial reflection symmetry and 
the rotating waves with a spatio-temporal symmetry. Despite the fact that the branches corres- 
ponding to both these patterns were found to be ~upercritical,~' bifurcation theory3, asserts that 
one and only one of these branches must be stable while the other must be unstable. Moreover, 
the theory cannot distinguish, simply from the bifurcation diagram, which one of the two patterns 
is the stable one. The stability analysis of the secondary time-periodic families is the primary goal 
of this work, in conjunction with the development of robust and computationally efficient 
numerical techniques for time-dependent viscoelastic flow calculations. 

In Section 2, we present the governing equations and the steady-state purely azimuthal 
solution. In Section 3, we present the adaptation of the time-splitting, non-zero Re algorithm to 
the viscoelastic Taylor-Couette flow. We also present two filtering techniques which were 
successfully used in order to remove high frequency, numerically induced oscillations from the 
solution. In Section 4, the streamfunction-vorticity, zero Re algorithm and its implementation to 
the Taylor-Couette flow is developed. Subsequently, in Section 5,  transient simulations for 
different parameter values are shown and the significance of these results is discussed in view of 
the analysis of the interaction of bifurcations with symmetry discussed elsewhere.30 Finally, the 
concluding remarks follow in Section 6. 

In a previous 

2. THE GOVERNING SYSTEM OF EQUATIONS 

Consider two infinitely long, concentric cylinders of radii rl and r2,  rl  < r2,  with fluid confined in 
the annulus between them. For convenience the cylindrical co-ordinate system (r-0-z), with the 
z-axis chosen as the common axis of the two cylinders, is used. In general, we are interested in 
describing the axisymmetric, axially periodic flow which occurs at large enough rotation rates of 
either one or both inner and outer cylinders, corresponding to angular velocities a, and Q,, 
respectively. The flow problem is characterized by two geometric, one kinematic and two flow 
dimensionless parameters: the ratio of the radii, l= r1/r2; the dimensionless axial wavelength 
L= 2n/ad, where d is the gap width, d = (r2 - rl)  and c1 is the wavenumber corresponding to the 
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assumed periodicity in the axial direction; the ratio of the angular velocities, p = sZ2/sZl; the 
Reynolds number, Re, 

where qp is the polymer viscosity and p the fluid density, representing as usual the ratio of inertia 
to viscous forces; and the Deborah number, De, 

indicating the importance of the fluid relaxation time, A l ,  to the flow process characteristic time, 
d/(rlRl) . The fluid relaxation time is the single most important physical quantity characterizing 
viscoelastic flow behaviour. It roughly represents the time scale over which the viscoelastic fluid 
exhibits a (partial) memory of its previous deformation state. In general, viscoelastic effects 
become important (in the sense that the fluid has a tendency to re-establish its previous 
deformation state) when De is larger than, or of the order, 1. Alternatively, instead of either one of 
the De or Re numbers, their ratio, the elasticity number E, 

can be used. For a given fluid, the magnitude of the elasticity number indicates the importance of 
elastic versus inertia effects. Alternatively, the elasticity number can be physically interpreted as 
a viscoelastic Prandtl number with v p  and DA being an appropriate kinematic viscosity and 
relaxational diffusivity, respectively. The elasticity number has the advantage of being solely 
a property of the fluid and not of the flow. 

The governing equations for the incompressible, viscoelastic flow corresponding to the 
Oldroyd-B fluid model are expressed in dimensionless form as follows. The continuity equation 
for an incompressible flow is expressed by the divergence-free condition 

v * v = o .  (4) 

The momentum equation is written (in order to enhance the stability of the numerical implement- 
ation) in its rotational form 

a v  1 
- = v x o + - V .  
at Re 

where IC is the ratio between the solvent viscosity qs and the total viscosity q=qs+qp in the 
Oldroyd-B constitutive equation 

(6) IC = q d h  + VP), 
w is the vorticity vector defined by 

o = v x v ,  
p is the dynamic pressure 

(7) 

p = n + 1/2V(v - v), (8) 
where ll is the hydrodynamic pressure and T is the elastic part (the viscoelastic contribution) of 
the extra stress tensor. The remaining viscous contribution to the stress scales with the ‘solvent’ 
viscosity, which does not necessarily coincide with the viscosity of the solvent but rather 
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represents a measure for the instantaneous viscous response of the ‘glassy’ modes within the 
viscoelastic system. The Oldroyd-B constitutive equation is then written as 

aT 1 - = - VT + T * vv + V V ~  *T - - ( T - vv - V V ~ ) ,  
at De (9) 

and 

(10) 
U 

t ~ =  - IM+T+ - (VV+ VV~), 
1-U 

is the total stress tensor. 
In the above dimensionless equations, the gap width d is used as the scale for length, the linear 

velocity of the inner cylinder, r1&, as the scale for velocity, and the mass in unit volume, pd3, as 
the scale for mass. 

Equations (4), ( 5 )  and (9) are considered together with the non-slip, non-penetration boundary 
conditions on the cylinder walls, 

and the periodic boundary condition in the axial direction, 

T(z)= T ( z + :), 
where a is the periodicity number, or wavenumber. 

The time-dependent integrations presented here refer to variables perturbing the primary (base) 
solution. This solution corresponds to the purely azimuthal steady-state Couette flow and is 
available in closed-form analytical  expression^.'^ 

3. TIME-SPLITTING/INFLUENCE MATRIX NONZERO Re ALGORITHM 

A pseudospectral method, combined with a time-splitting/influence matrix technique, is used for 
the numerical solution of the time-dependent equations corresponding to the Taylor-Couette 
flow problem for an Oldroyd-B viscoelastic fluid model, equation (9). The method developed here 
is a slight variant of the Green’s function technique used by Marcusz5 and the influence matrix 
technique used by Phillips and S01iman.~~ For the time-dependent viscoelastic flow calculations, 
the formulation of the equations is developed in the primitive variables: velocity, pressure and 
stress. At each time step, the velocity field is updated quasi-implicitly, the pressure implicitly, and 
the extra stresses explicitly, by using a three-stage time-splitting algorithm. 

3.1. Method formulation 

In the first stage, the velocity in the momentum equations and the stress in the constitutive 
equations are advanced in time, accounting explicitly for the non-linear terms and the elastic 
extra stresses in the momentum equations, and for all the terms in the constitutive equations, 
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using a second-order multistep Adams-Bashforth method: 

1 
v x o) + -V . T- k( Re 

1 [:( Re Re 
vn+Il3 = v" + At - v x o) +-V-T- -V2v -- 

1 
De 

- V  * VT +T . VV + VvT. T - - (T - VV - vVT) 

In the second stage, an initial pressure correction is implemented implicitly, 

(15) v n  + 213 = v n  + 113 - Atvan + 1, 

where is evaluated by solving a Poisson equation, 
v . ,,*+ 113 =~tvtan+ 1, 

subject to the homogeneous boundary conditions, p+' = 0, on the walls. Equation (16) is solved 
by using a fast Poisson solver which is based on a direct tensor method applicable for discretized 
PDEs with no mixed derivatives in a regular geometry such as Taylor-Couette f l ~ w . ' ~ * ' ~ ~  34 

In the third stage, a viscous correction is calculated implicitly by solving a Helmholtz equation, 

subject to non-slip and non-penetration at the wall boundary conditions. This implicit updating 
is accomplished efficiently by again using a fast solver which is based on the fast Poisson solver 
discussed before, after some m~dif icat ion.~~ 
An immediate consequence of equations (15), (16) and (17) is that the divergence of the final 

velocity field satisfies a Helmholtz equation (compare with the equation derived according to the 
SPPE approach in the continuous time limit on p. 1137 of Gresho and SaniZ0) 

V2@ tn+ I), 
V . y + ' =  At 

Re(1- K) 

the term involving the divergence of being identically zero because of equation (16). 
Therefore, due to the linearity of the Helmholtz equation, the final velocity will be divergence-free 
if and only if it is divergence-free on the boundaries2' In addition to guaranteeing the equivalence 
of the pressure Poisson equation to the incompressibility c ~ n s t r a i n t , ' ~ * ~ ~  the divergence-free 
condition on the solid boundaries has also been found p r e v i o ~ s l y ~ ~  to be critical for the stability 
of the numerical method. To implement it, steps 2 and 3 need to be repeated with non- 
homogeneous boundary conditions for the pressure as follows* (see References 18,21 and 25 for 
an alternative but equivalent approach, using Green's functions). At the end ofthe n+ 1 time step, 
the corrected pressure, f",  and velocity, v"", are obtained as 

k - 1  
+ l -  -n+1 f -P + C I ; . p i ,  

i =  1 

* The approach described here, which leads to a set of linear equations between the boundary values of the pressure at the 
solid boundaries, is exactly what is called the 'influence r n a t r i ~ ' ' * * ~ ~ * ~ ~  or 'capacitance rnatri~"~ technique. 
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k- 1 

y"+'=i"+'+ c f i v i ,  (20) 
i =  1 

where the coefficientsfi, i =  1,2, . . . , k- 1, with k being the total number of nodes on the cylinder 
walls, are chosen so as to make v"+' divergence free on the boundary node xi. The trial solutions 
for the pressure, pi, are obtained from the solution of a Laplace equation 

v2pi = 0, (21) 

Pi (xj)= J i  j r  (22) 

subject to the boundary conditions 

where xj, j = 1, . . . , k, denote nodal points at the cylinder walls (solid boundaries), and J i j  is the 
Kronecker delta. The corresponding velocities, vi, are then obtained from v : + ~ / ~ ,  

$'+ 2'3 = - AtVp, (23) 
by solving a Helmholtz equation similar to (17), 

Note that only k- 1 modes are involved in the axpansions provided by equations (19) and (20) 
because of the singular character of the equations due to the incompressibility condition. Indeed, 
the pressure at the kth mode can be assigned an atbitrary value. 

In fractional step techniques,"* ''9 l7 the enforcement of the divergence-free condition by 
a projection of the final velocity field through a scalar field q does not necessarily imply an 
optimum approximation of the pressure P by q.37* 38 This is because the projection implemented 
at the very end of the velocity update procedure implies the approximation of a modified 
non-homogeneous Poisson equation for the scalar field q (equation (9) in Temam3'). Although 
this modification was not found to change the accuracy of either the velocity or the pressure 
approximation in low-order (first-order in time) numerical schemes, this is not the case when 
higher-order time approximations are used.38 In addition, the velocity only approximately 
satisfies the no-slip conditions at the solid b o u n d a r i e ~ . ' ~ * ~ ~ * ~ ~  In contrast, the use of a time- 
splitting approach leads to the correct form of Poisson equation for the pressure: equation (16) 
with v " + ' / ~  substituted by equation (13). Moreover, the final velocity update v"+l  obtained with 
the time-splitting/influence matrix technique described above satisfies exactly both the non- 
penetration and no-slip boundary co_nditions at the solid boundaries. 

3.2. Method implementation 

We now comment on the implementation of the numerical procedure and the accuracy and 
stability of the code. A spectral collocation (pseudospectral) method is used. The expansion 
functions used in the spectral representations are Chebyshev polynomials in the radial direction 
and Fourier sine and cosine trigonometric functions in the axial (periodic) direction involving 
M and N collocation points, respectively. The boundary conditions at the two rigid walls are that 
the velocity of the fluid must equal the velocity of the rotating wall. 

Once the derivatives are spectrally evaluated, the updating of the variables due to the explicit 
part of the time-splitting procedure, (13) and (14), can be performed in a straightforward and 
inexpensive way. The most computationally demanding steps are the implicit updates in steps 
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2 and 3, requiring the solution of two Poisson and five scalar Helmholtz equations.? It is therefore 
imperative that fast solution techniques are used, since a typical run involves thousands of 
discrete time-step updates. For both Poisson and Helmholtz equations, the same approach of 
direct solution through tensor decomposition is used.33*34,39 When either equation is spectrally 
discretized, a system of (N x M) linear algebraic equations is generated. Owing to the absence of 
mixed derivatives in the PDEs, the corresponding ( N x M )  by ( N x M )  square matrix can be 
written as the tensor product of two (N x N) and (M x M) square matrices. We exploit this fact by 
using a tensor product method to invert the matrix, as described by Lynch et a1.,33 Haidvogel and 
ZangJ4 and Patera and O r ~ z a g . ~ ~  In this way, for every right-hand side we reduce the number of 
operations to O(N x M2, N2 x M )  and the overall storage requirements4' to O(N x M) . 

3.3. Filtering 

The stability of the numerics€ procedure is governed by two factors. The first one is the 
Courant criterion, AtlAx < 1, which refers to the non-linear, convective-type terms appearing in 
the explicit steps (13) and (14). Owing to the use of Chebyshev spectral approximations which 
correspond to a non-uniform mesh concentrated towards the wall, the time step is forced to be 
O ( l / M 2 )  . The second factor is the accumulation of the temporal discretization errors, introduced 
by step 1 and step 3, which are of the order O[At, At/(Re(l - K))], respectively. This accumulation 
of errors, coupled with the presence of numerically induced high frequency unstable eigenvec- 
tors,30 results in the excitation of higher-order spectral modes, thus inducing high frequency 
oscillations in the solution. We used two equally effective ways to alleviate this problem. 

The first approach is a filter suggested by Vichnevetsky and Bowle~.~' This is the exponential 
cutoff filter which for a two-dimensional Fourier fitted expression results in 

filtered =9. . , 
Sj, i 1 .8 ,  Pi (Fourier space), 

n-no 

gi, is the variable in the Fourier space corresponding to the i, j mode in the two spatial directions 
and n is the total number of modes (equal in this case) in each direction. The point of cutoff is 
no and B indicates how severely modes higher than no are damped. A similar expression can be 
obtained for a Chebyshev approximated variable. 

An alternative approach to filtering is the spectrum regularization technique. From previous 
applications of spectral methods to viscoelastic flows:' it has been seen that the magnitudes of 
the modes of the spectrum of a physical variable, such as velocity or stress, follow certain regular 
patterns with respect to the order of the mode, provided that the spatial variation of the variable 
is smooth enough. The spectrum of modes of such a smooth function can be divided into three 
frequency regions: low, intermediate and high. The amplitude of the low frequency modes varies 
in an unpredictable fashion following the transient variation of the flow variables. This is the most 
important part of the spectrum which determines the accuracy of the numerical approximation to 

t The workload can actually be reduced to one Poisson and three scalar Helmholtz equations at the expense of increasing 
the storage requirements (by 4N3 words) through the precalculation and storage of the 4N Green's functions for the radial 
and axial velocity components corresponding to the 2N pressure modes. 
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the physical variable. The amplitude of the intermediate modes decreases with mode number, 
closely following a parabola or a straight line in a log-log plot of mode amplitude versus mode 
number. Finally, the amplitude of the high frequency modes usually varies in an irregular fashion 
because of numerical error. When numerical instabilities arise, they are usually manifested in an 
abnormal increase of the magnitude of the higher-order modes. This suggests the following 
rectifying procedure. 

The original function, g, is first transformed into a series of Fourier or Chebyshev modes, 9. 
Then a simple relation between log I gi I and log ( i )  , which can be linear or quadratic depending on 
the original function, is found through fitting of the log I gi I -log(i) relationship of the intermedi- 
ate modes (usually the middle third of the modes). The high frequency modes can then be 
‘regularized’ by substituting their magnitude according to the fitting formula obtained from the 
previous relationship. 

The parameters required by the spectrum regularization technique are the starting and the 
ending mode numbers for the intermediate mode region, no and nl ,  which can be found either 
from the analysis of the spectrum of the corresponding functions or from previous experience. In 
the calculations reported in this work, linear regression has been used to fit a straight line in 
a log-log plot of magnitude versus mode number with no=(1/2)n and nl=(2/3)n for a total 
number of modes n. For further details on the implementation of the filtering techniques and the 
behaviour of the solution as the filtering parameters are changed, the interested reader is referred 
to the Ph.D. thesis by L ~ u . ~ ~  

We used filtering on all the variables, mostly in the radial, and occasionally both in the radial 
and in the axial, directions (see also Section 5). The optimal frequency, the application of the 
filtering, was found to be once every 50 to 100 time steps. The effect of the filtering is discussed 
further below in Section 5.3 along with the analysis of the simulation results. 

4. STREAMFUNCTION-VORTICITY ZERO Re ALGORITHM 

4.1. Method development 

In the limit of zero inertia, the momentum equation (5) reduces to 

K 
V .  ( T+- - Kv*) -vp =o. 

Note that the above relation does not contain any time derivatives and therefore it acts as an 
algebraic constraint to the discretized form of the governing equations. This realization led to the 
development of a new algorithm, which treats the momentum equations as constraints to the time 
evolution of the stress field as is dictated by the constitutive equations in a streamfunc- 
tion-ue-vorticity formalism suitable for axisymmetric flows. 

The divergence-free constraint is automatically satisfied for an axisymmetric flow by expressing 
the radial and axial components of the velocity, u, and Vg, in terms of the streamfunction, 4, as 

The critical issue is then how to update the velocity field (the streamfunction 4, and the azimuthal 
velocity, ve). Following the standard approach for the solution of Stokes problems, the pressure is 
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eliminated by cross-differentiating and subtracting the I and z components of the momentum 
equation, (1 3), so that 

Equation (28) is a inhomogeneous, biharmonic equation with respect to the streamfunction. In 
the following, it is used as a constraint to any stress field update and is solved using a classical 
streamfunction-vorticity split with the Dirichlet boundary conditions for the vorticity obtained 
from the no-slip velocity conditions through an influence matrix approach.21 

Moreover, the Oldroyd-B constitutive relation, equation (9), is written in the following form: 

dT 
-=f(v,  dt T)+g(v, T), (29) 

where f represents the non-linear terms of the equation, 

and g represents the 

Equation (29) can 
and t,+ l: 

f (v, T)=  -V * V T  + T * VV + VV' * T, 
linear terms, 

1 
De 

g(V, T )  = - (T - VV - VV'). 

now be formally integrated in time between two successive time steps, t, 

If the first integral on the right-hand side of (32) (non-linear terms) is evaluated using an Nth order 
explicit scheme and the second one (linear terms) using an Nth order implicit scheme, (32) is 
discretized in time as 

N N + 1  

More specifically, in the calculations reported in this work, an explicit second-order Moulton and 
an implicit second-order Adams-Bashforth method were used. 

We now consider (28) at the (n+ 1) time step and substitute for T"+' from (33) while u, and 
u, are expressed in terms of &J using (27). By carrying out the algebraic manipulations, a non- 
homogeneous biharmonic problem in terms of the streamfunction, I$, is obtained, 

E4@'+'=h(T", ..., TnPN+ '  , on ,  ..., qY-N+l, u;, ...) ve , At, De, $3 (34) n - N + l  

where the cylindrical operator; E, is defined by 

Note that the right-hand side of (34) is expressed only in terms of known variables (i.e. 
corresponding to the time steps prior to n+ 1). This leads to the following solution algorithm. 
First, the updating of the streamfunction is obtained from the solution of (34). This equation is 
nothing more than a Stokes problem for @'+', with a driving force on the right-hand side. The 
boundary conditions and the solution procedure of (34) are detailed in Section 4.1. Note that (34) 
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is an elliptic equation for which is close, in spirit, to the idea of the reformulation of the 
momentum equation to an explicitly elliptic form pioneered by King et aZ.43 

Second, for the updating of Ug, we insert (33) into the 8-component of (26) rather than (28) since, 
due to axisymmetry, the pressure does not appear in the 8-momentum equation. Therefore is 
obtained by solving a Poisson equation, with a right-hand side which contains only known 
quantities evaluated at the (n), ..., (n - -N+ 1) time steps. The boundary conditions are that the 
azimuthal velocity at the inner and outer rotating walls is constant and given as an input to the 
problem. 

Finally, after obtaining the updated velocity field, v n + l ,  we employ (33) to get the stress field 
update, Tn+'. The whole procedure, as described above, is then repeated at each time step. The 
temporal accuracy of the method is O(AtN) ,  and its stability is governed by the Courant criterion 
of the explicit part of (33), At/Ax < 1. The N value used in our calculations was 2. 

4.1. The solution to the biharmonic problem 

non-homogeneous, axisymmetric, biharmonic equation 
The key to the effectiveness of the proposed algorithm is in the efficient solution of the 

E44 = RHS, (36) 

where RHS is a known right-hand side function of r and z, which is independent of the dependent 
variables. The corresponding boundary conditions to (34) are the no-slip, non-penetration 
conditions at the wall, i.e. 

vr=uz=O,  at r = r l ,  r = r 2  (37a) 

expressed in terms of the streamfunction 4, (27) as 

+=o, 3=0, ar on a ~ ~ ~ , ~ ~ .  

In order to apply the same direct tensor decomposition approach that we used for the solution 
of the Poisson and Helmholtz equations, (36) needs first to be decomposed into a set of separable 
PDEs. This can easily be achieved by considering a set of two equations 

and 
E2+ = W, 

E2w = RHS, 

(38) 

(39) 

where w is the vorticity, seen here as an auxiliary intermediate variable. Both equations (38) and 
(39) can now be solved efficiently by the direct tensor decomposition method exploiting the 
separable structure of the cylindrical operator E2. In actuality, all these equations, i.e. the 
Poisson, Helmholtz and cylindrical operator problems, are numerically handled by the same 
subroutine which is only slightly modified as the particular type of equation changes. 

The numerical procedure for the solution of the biharmonic equation involves three steps. In 
the first one, the inhomogeneous cylindrical equation 

E2w+ = RHS, (40) 

w + = 0 on ailsolid, (41) 

is solved subject to the homogeneous Dirichlet boundary conditions 
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In the second step another inhomogeneous cylindrical equation is solved 

E z 4 +  =w+, (42) 

4+ =O on di2solid. (43) 

also subject to the homogeneous Dirichlet boundary conditions 

However, this procedure leads to a solution 4’ which, in general, fails to satisfy the Neumann 
boundary condition, 

Consequently, a correction needs to be implemented in the third step of the solution. The solution 
4 is expressed as 

k 

4 = 4 + +  C J;.4i, (45) 
1= 1 

where, di is a Green’s function of the biharmonic equation, i.e. di satisfies the homogeneous 
biharmonic equation with inhomogeneous boundary conditions 

Vzwi=O with wi(xj)=dij, 

V2& = wi  with +t(xi) = 0, 

and the coefficientsJ chosen such as to satisfy the von Neumann equation, (44), on the boundary. 
The coefficientsfi can thus be calculated by imposing (44) on the boundary nodes i = 1, . . . , k after 
substitution of (45), 

-(xj)=--(xj)+ a4 a4 + c f i - ( ( x j ) = O s  
dr ar i = l  ar 

(47) 

This approach leads to a set of k linear equations (compare the integral compatibility equations 
(30) provided by Dennis and QuartapelleZ’ using a Green’s function approach) 

Note that for the given problem, (48) is LU decomposed once in the beginning of the program so 
that for every time iteration only one pair of forward and back substitutions of total workload 
k2 is necessary. Moreover, as was pointed out by a referee, the workload and storage require- 
ments can be further reduced by taking into account that the boundary conditions corresponding 
to each axial wavelength are decoupled. Therefore, one has k/2 matrices each of which is 2 x 2 
(since the values on the two cylinders remain coupled). Time and storage is now linear in k. This is 
also made clear by Marcus,” and it is one of the great advantages of a Fourier representation in 
a periodic direction. This decoupling also is present in the Poisson and Helmholtz problems. 

The numerical implementation of the streamfunction-vorticity approach is basically similar to 
that of the time-splitting/influence matrix technique, where the LU decomposition of the matrix 
[V,& (xi)] and the solutions 4is are constructed and stored only once in a pre-processing step. 
For the streamfunction-vorticity algorithm, the most computationally demanding step still 
remains the implicit evaluation of the biharmonic equations requiring the solution of one Poisson 
(for ue) and two biharmonic (for the streamfunction) equations, which are computationally 
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equivalent to five Poisson-type equations.$ Thus, the streamfunction-vorticity formalism, if the 
evaluation of the pressure is not wanted, appears to be slightly more efficient, requiring both less 
computational work per time step and less storage. Indeed, it was used in implementing the 
non-zero Re algorithm with some computational gains. However, it is less general as it not 
applicable to fully 3 D  flows. 

Both algorithms described in Sections 3 and 4 are very accurate (due to the involvement of 
spectral expansions) and very efficient in their implementation, both in terms of computational 
operations as well as storage. For an equal number N of Fourier and Chebyshev modes, the 
storage requirement increases linearly with the number of variables involved (EN’), and the 
computational requirements only increase as the 3/2 power ( a ( N z )  3/2), as opposed to a quadratic 
and cubic dependence, respectively, if a traditional Gaussian elimination technique were to be 
employed. Note that the use of fast Fourier transforms would have made the operation count to 
be asymptotically, for large N ,  almost linear (EN’ log N )  with respect to the total number of 
unknowns, which is the absolute theoretical minimum. However, for the relatively small N used 
in this work (N<32), there are no computational savings due to the higher value of the 
proportionality  coefficient^.^^ 

5. RESULTS 

Our investigation was focused on three regions, corresponding to small, medium and large values 
of the elasticity ratio E. For comparison purposes, we used the same geometric parameters: the 
ratio of the inner to the outer radius, 5 =0*95, and the ratio of the inner to the outer rotational 
velocity, p = 0 5  All the results which we show have been checked with mesh refinement, both in 
space and in time. The most refined spatial discretization used was [16 x 331, i.e. it involved 16 
Fourier modes in the axial direction and 32 Chebyshev modes in the radial direction. The 
reported results were obtained, unless otherwise noted, using a mesh size [16 x 331. Note that the 
relatively small number of Fourier modes used was perfectly adequate for the purposes of this 
investigation, since the calculations are limited to the parameter region close to the bifurcation 
point where the incipient secondary flow involves just two Fourier modes (a cosine and a sine 
term). 

The size of the time step varied depending on the value of the parameters and the type of 
algorithm used. For Newtonian fluids (E  = 0) and for calculations at small E, E < 1 (see Section 5.1), 
the dimensionless time step used was At=O.l. For intermediate values of E, ~=0(1)=0-24  (see 
Section 5.2), the time step needed for a stable simulation was found to be At=0.02. For these 
particular calculations, filtering or regularization techniques were essential in order to obtain 
stable results, otherwise the required time step would have been prohibitively smaller. For the 
region of very large values of E, E % 1, i.e. E - 100, the high Re time-splitting technique proved, as 
expected, to be very unstable. Therefore, in the limit of Re=O, the creeping flow biharmonic 
algorithm described in Section 4 was used instead. Note that this limit is very well respected in 
traditional visco-elastic applications involving viscous materials. In these calculations, the time 
step restriction for stability was quite lax and stable simulations were obtained, without filtering, 
for At = 1.0. 

$ Again, similarly to the time-splitting/influence matrix case (see footnote?), the Workload can be reduced to one Poisson 
and one biharmonic equations at the expense of increasing the storage requirements (by 4N3 words) through the 
precalculation and storage of the 4N Green’s functions for the streamfunction and the vorticity components correspond- 
ing to the 2N no-slip velocity modes. 
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For an initial perturbation to settle into a limit cycle, as we later show, the time integration had 
to be continued for many thousands of dimensionless units of time. As an example, for ~=0-24,  
with a grid size [16 x 331 (4752 unknown variables at each step) and At =0*02, a time integration 
for lo00 dimensionless units of time required about 1 CPU hour on the IBM 3090, or about 10 
min on the Cray-Y/MP, running at about 15 MFLOPS on the IBM 3090 or 90 MFLOPS on the 
Cray-Y/MP. Even though the computational performance in MFLOPS of the creeping flow and 
high Re algorithms were comparable, in terms of actual time the simulation at Re =O was 50 times 
faster since the time step used there was 50 times larger, At = 1.0. This allowed simulations very 
close to the bifurcation point to be performed where the dynamic changes are slow. 

The main objective for the development of numerical algorithms and the use of the time- 
dependent simulations in this work was the investigation of the stability of the secondary flow 
branches developing supercritically under post critical conditions from the primary family of 
visco-elastic cylindrical Couette flow. Therefore, the following results first confirm and then 
complete (in terms of stability analysis) the findings of the linear stability analysis and bifurcation 
branch investigation presented p r e v i o ~ s l y . ~ ~  

Both the high Re time-splitting and the inertialess biharmonic algorithm address initial 
boundary value problems. As such, it is necessary to initialize the calculations. One option, is to 
perform a ‘cold start’, i.e. start the simulation with the purely azimuthal Couette flow solution as 
the initial state and rely on computer ‘noise’ for the triggering of possible numerical instabilities 
which will act as mathematical imperfections. This approach is close to laboratory experimental 
conditions. However, it is a very expensive means of investigation because of the slow growth of 
the secondary flow near the critical bifurcation point. The other alternative is to use the 
eigenvector provided by the linear stability analysis to form a perturbation superimposed onto 
the Couette flow solution with an amplitude sufficient to speed up the realization of the final 
outcome. Another advantage of this approach is the capability at moderate and high E of 
individually triggering the rotating or the standing wave instabilities through the use of the 
combination of eigenvectors corresponding to each pattern. 

5.1. Validation procedure 

An important component of our work was the capability to validate the transient solutions by 
comparing the results of the time integration algorithms to the predictions obtained from the 
independent linear stability analysis investigation, which in turn was also separately ~alidated.~’ 
Table I depicts some representative results obtained from both the time-splitting method 
(non-zero Re) and the biharmonic (zero Re) algorithm. The eigenvalues shown in the last column 
of Table I are obtained from a non-linear regression of the time evolution of the radial velocity u,, 
at a fixed point xM in the domain. The comparison is extremely good, which proves that the 
transient behaviour of the system can be adequately reproduced, at least in the early stages of the 
instability development. It is also worth noting that, in accordance with the linear stability 
analysis investigation, runs with parameters which lie close to, but in the stable region of, the 
instability boundary showed a decrease and an eventual annihilation of any small initial 
perturbation. This performance is yet another indication of the faithful representation of the 
transient behaviour of the physical system by the numerical algorithms developed in this work. 

5.2. Calculations at small E 

The simulations in this region of study were considerably simpler, faster and less expensive as 
compared to the rest of the computations since a relatively large time step was used, At =0*1, and 
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Table I. Validation of the initial value numerical codes 

& Re De r a P U 

LSA* IVPt 

0.0 82.529 0.0 0.5 3.1 0.118 1.539 x 1.529 x 
0.0 99-564 0.0 0 5  3.0 0.167 8.246 x 8.339 x lo-’ 
0.0 184.986 0.0 0 9 5  3.128 0-0 2.657 x 2-687 x 
5.7 x 174.718 1.0 0-95 3.128 0-0 -5.032 x -5.024 x lo-’ 
0242 82-627 20.0 0.95 3.0 0.5 -3.884 x 10-7 -3.959 x 10-4 

4.461 x 10-’i 4.484 x 

1.184 x lO-’i 
a3 0.0 59.5 0.95 8.0 0.5 5.145 x 5.210 x lo-’ 

1.184 x lo-% 

* Results of linear stability analysis as a boundary value problem using 16 Chebyshev modes in the radial direction 
t Results of the initial value numerical code using 16 Chebyshev modes in the radial direction and eight Fourier modes in 
the axial direction. The amplitude of the initial perturbation is 1.0 x lo-’. 

the resulting final state after the onset of the instability, that of a steady Taylor vortex flow, was 
established fairly quickly after the imposition of the initial perturbation. 

Figure 1 shows the time evolution of a representative state variable, in this case the value of the 
radial velocity u, at the particular location where it achieves its maximum amplitude in the 
computational domain, x M .  This simulation was performed for the following parameters: 
E = 0.004, Re = 250; De = 1.0; o! = 3.0; (= 095; p = 0-5; K =O.O. Figure 2 shows the corresponding 
streamfunction contourlines for the established secondary flow at the new steady state. The 
equidistant contours depicted are normalized from -1.0 to 1-0. The dashed lines indicate 
negative and the solid lines positive streamfunction values. The initial perturbation corresponds 
to the eigensolution obtained from the linearized equations. A direct comparison with the 
eigensolution (Figure 1 of Reference 30) shows that the final solution has no noticeable changes. 

Note that these parametric conditions are situated well above the critical bifurcation point 
(Re,= 2025 for the same value of De= 1.0). The physically realizable solution in this case 
probably corresponds to a non-axisymmetric wavy Taylor vortex flow which cannot be captured 
by our investigation. However, the particular value of this example of viscoelastic flow simula- 
tions is to demonstrate that time-dependent calculations can be considered as an alternative way 
of calculating steady-state solutions. This is very important in viscoelastic flow simulations due to 
the large number of variables involved. The advantage over conventional steady-state finite 
element43s44 or spectral/finite element4’ and pseudospectral/finite difference4’ calculations is in 
the savings in the storage and in the calculation of matrix inversions which, especially for three- 
dimensional applications, can be very substantial given that iterative techniques (for example, 
Picard iteration44) are not stable when applied to high De viscoelastic flow  simulation^?^ 

5.3. Calculations at intermediate E 

The time-dependent calculations in this region were performed starting from two different 
types of initial perturbation states, corresponding to the rotational and standing waves. These 
states were provided by the analysis of the bifurcation branches developed after the onset of 
in~tabilities.~’ The specific parameter space investigated is E = 0-2424, = 0.95, p = 0 5  and K = 0.0. 
From the neutral stability curve obtained by the linear stability analysis, the critical wavenumber 
was found to be a, = 4.2. The bifurcation point is located at Re, = 76.3. 
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.o 

igure 1. Time evolution of v, at x M  for the following parameters: ~=0004, Re=250; De= 1; a=3Q [=0.9S; p=@$ 
K = 0.0 
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Figure 2. Normalized streamfunction contourlines for the established secondary flow at the new steady state for the 
parameters corresponding to Figure 1. The dashed lines correspond to depression and the solid lines to elevation regions 

Figure 3 shows two simulations for the time evolution of u, at a fixed location xy (centre of the 
computational domain) for parameter values within the instability region, more specifically 
Re = 76.6 (solid line) and Re = 76-7 (dashed line), and for the initial condition of a rotating wave. 
From the two simulations, one can conclude that the secondary flow is oscillatory and settles into 
a stable limit cycle, evolving faster away from the bifurcation point. One can further conclude that 
the bifurcation is supercritical since the amplitude of the oscillation corresponding to the higher 
Re case is larger. This is in agreement with the bifurcation branch results already rep~rted,~' 
although the results are not directly comparable because of the use of a substantially coarser 
mesh in the non-linear investigations. Note that the small irregularities on the envelopes of the 
oscillatory curves shown in Figure 3 are due to coarse sampling and not due to any regular 
physical pattern or time integration errors. Figure 4 shows details from the last stages of the 
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Figure 3. Time evolution of u, at x M  for the following parameters: E = 0.24; De = 18.5; a = 4.2; [= 0.95; p = 0.5; K = 0.0 
(rotating wave); Re = 76.6 (solid line); Re = 76.7 (dashed line) 
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Figure 4. Magnification of the last stages of the simulation corresponding to the following parameters: ~ = 0 - 2 4 ;  Re=76.6; 

De=18.5; a=4.2; [=0.9S; p = @ 5 ;  K = O ~  (rotating wave) 

simulation at Re=766.  It can be seen that the maximum amplitudes of the curve are not 
symmetric above and below the abscissa (time axis). Since the radial velocity is identically zero in 
the base (purely azimuthal) flow solution, this can be attributed to the effect of non-linearities of 
the problem and implies that higher harmonics are involved in the final limit-cycle solution. 
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Table 11. Comparison between the linear stability analysis (LSA) and the simulation initial value 
problem (IVP) results for (=095,  p = 0 5  and ic=O.O 

E Re De a d Figure No. 

LSA IVP 

0-2424 76-6 18-5 4.2 0.458 x 10-3 

0-2424 76-7 18.5 4.2 0.515 x 10-3 

m 0.0 595 8.0 0.510 x 10-4 

m 00 596 8.0 0750 x 10-4 

m 00 60.0 8.0 0-170x 10-3 

0513 x lO-'i 

0511 x lo-% 
0184 x lO-'i 

0184 x 1O-'i 

0.183 x lO-I i*  

0.431 10-3 3 
0.513 x lO-'i 
0513 10-3 3, 6 
0.511 x lO-'i 
0510 10-4 9 
0.184 x 1O-'i 
0.750 10-4 9 
0184 x 1O-'i 
0160 x 10-3 8, 9 
0183 x 1O-'i 

Through a non-linear regression applied to the early stages of the instability growth (up to 5000 
dimensionless units of time), the oscillation frequency and its exponential amplification were 
found to agree very well with linear stability analysis results as indicated in Table 11. The 
comparison was performed with the same number of Chebyshev modes. Figure 5 shows a snap- 
shot (corresponding to the parameters of Figure 3) of the streamfunction contourlines of the 
secondary stable oscillatory motion (limit cycle). As a direct comparison with the corresponding 
eigenvector (Figure 4 of Reference 30) shows, this solution is very close to the linear stability 
analysis prediction. A more careful comparison between the two solutions reveals a small increase 
in the inclination of the travelling wave. Note that due to the nature of the symmetries of this 
particular solution, no more snap-shots are necessary in order to visualize its evolution in time. 
The rotating wave simply translates in time along the z-axis, travelling one wavelength every 
period. Moreover, the direction corresponding to the positive translation of the travelling wave 
forms an obtuse angle with the separating streamline of the secondary Taylor flow cells. For 
example, the travelling wave represented in Figure 5, with Taylor cells inclined towards the outer 
cylinder, translates in the positive z-axis direction (left in Figure 5). Of course, due to the axial 
symmetry of the problem, there is another family of travelling waves corresponding to the mirror 
image (with respect to a horizontal plane) of those represented in Figure 5. These travelling waves, 
for which the secondary flow cells are inclined towards the inner cylinder, translate in the 
opposite direction (towards the negative z-axis). 

According to the theory of bifurcation with symmetry (Section 4 of Reference 30), since the 
rotating wave pattern has been found to be stable, the other branch, that of the standing wave, 
should be unstable. Indeed, as Figure 6 shows, at Re= 76-6, a standing wave initial perturbation 
increases exponentially with time up to the point where the code (for the same fixed time step size) 
becomes numerically unstable. Repeated attempts with different initial amplitudes of the per- 
turbation and at different Re have all failed to produce a stable limit cycle solution. In all these 
attempts the increasing amplitude of the secondary flow with time ultimately places the utilized 
time step size beyond that corresponding to the limit of stability (as defined by the Courant 
criterion), thus eventually causing the divergence of the numerical scheme. It is anticipated that 
the same limit cycle corresponding to a travelling wave would have been recovered if a small 
enough time-step size had been used. Unfortunately, the increased computational workload 
resulting from a small time step size and an anticipated long transient make these calculations 
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Figure 5. Snap-shot of the normalized and equidistant streamfunction contourlines for the established secondary flow at 
the new state for the parameters corresponding to Figure 3 and Re= 76.6. The solution is a travelling wave 
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Figure 6. Time evolution of u, at xy for the following parameters: E = 024; Re = 76.7; De = 18.5; u = 4.2; =0.9S; p = 0.5; 
K = 0.0 (standing wave) 

impractical with the available computational resources and, as a consequence, they were not 
carried out. Of course, as expected, for Re < Re, = 76.3 the initial perturbation, irrespective of the 
symmetry, was always found to decay to zero. 

In all the previous calculations for small and moderate elasticity values, filtering techniques 
have proved to be a very effective tool for stabilizing the numerical integration. Essentially, (37) 
has been used with = 1.0 and no =05n, where n is the total number of modes in the particular 
direction that the filter is employed. The filter is applied once every 50-100 time steps. 
Figure 7 shows the time evolution for the solution obtained with the parameters of Figure 6 with 
(dashed line) and without (solid line) filtering. One can readily appreciate the dramatic benefit 
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solution 

brought about by the periodic use of filtering. We have also occasionally used the spectral 
regularization technique with similar success. 

5.4. Calculations at infinite E (creeping $ow conditions) 

All the simulations reported in this subsection were performed using the biharmonic algorithm 
described in Section 4, with constant time step At = 1-0. They all correspond to zero inertia 
conditions (Re = 0). As with the results reported in the previous subsection, the two possible states 
which are used as initial conditions correspond to the rotating and standing wave patterns 
realized in the critical eigenvector space at the bifurcation point. The parameters used throughout 
are c=O.95, p=0-5'and ~ = 0 - 0 .  The critical wavenumber which is evaluated from the linear 
stability analysis is a, = 8.0. For these parameters, the onset of instability occurs at De, = 59.4. 

The simulation of the rotating wave perturbation at post-critical conditions (De = 60.0), as seen 
in Figure 8, grows exponentially up to a point where no matter how small the time step is set, the 
numerical solution diverged. This numerical instability, always observed when the amplitude of 
the secondary flow exceeds a certain level, seems to be related to the sensitivity of the Maxwell 
model to high frequency modes (as revealed from the flattening of the normal stability curves for 
high wavenumbers-see Reference 30) and limits the range at which any post-critical solution can 
be obtained (irrespective of the initial conditions) close to the bifurcation point. Simulations 
closer to the critical bifurcation point presented the same behaviour with much slower growth 
rates. This indicates that the rotating wave is not a stable solution to the problem. On the other 
hand, when a standing (radial) wave perturbation of small enough amplitude is used as an initial 
condition, then the post-critical simulation grows into a steady oscillatory motion, as shown in 
the composite plot of Figure 9 for De = 59.5, De = 59.6 and De = 60.0. The magnitude of oscillation 
is increased as the De number increases and hence the bifurcation is supercritical. These results 
confirm the bifurcation diagrams calculated previously. 
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Figure 8. Timeevolution ofv,atx,forthefollowingparameters:~=co; Re=O;De=60.0;a=8~3=0.95;p=DS;K=0.0 
(rotating wave) 

The growth rates and the oscillation frequencies exactly match those predicted by the lin- 
earized results shown in Table 11. Again, an asymmetry is seen in the solution with respect to the 
location of the maxima and minima of the enveloped curves which indicates the presence of 
higher harmonics. From Figure 9 it is clear that as De is moved farther away from the critical 
point, De,, the limit cycle solution becomes more asymmetric, as for example the simulation for 
De = 600 indicates. The effect of non-linearities is also reflected in the streamfunction contour- 
lines shown in Figure 10. The four consecutive time snapshots correspond to the steady 
limit-cycle solution at De=600 of Figure 9. Each picture lies 1/8th of a period away from its 
neighbour. The solution satisfies the defining symmetries of the standing wave pattern (equation 
(4.4) of Reference 30). However, the skew-reflection symmetry 4(z, t)= -4(-z, t )  present in the 
original eigenvector (obtained from the linear stability analysis), due to its sinusoidal time- 
dependence, is no longer satisfied. Therefore, simulation along the full wavelength is necessary. 
Furthermore, a comparison with the linear stability analysis results3' shows a small but notice- 
able distortion of the radially travelling vortices which suggests that non-linear effects come into 

In comparison to the moderate E results, it is interesting to note here that as E increases from 
0.24 to co, the rotating and the standing wave branches exchange stabilities. As e~plained,~' the 
standing wave family of solutions bifurcating at large values of E (823.4 for the geometric and 
fluid parameters considered in this work) is a different family from that at intermediate values of 
E (approximately E between 0.12 and 3-4, see Figure 13 of Reference 30). The standing wave 
solution at Re = 0, shown in Figure 10, is also described as a radial wave and is shown here to be 
stable. In contrast, the standing wave solution for intermediate values of E is unstable, whereas the 
rotating wave solution shown in Figure 5 is stable. 

play. 

6. CONCLUSIONS 

The primary objective of this work was to develop a robust computational method to enable the 
systematic investigation of complex time-dependent multidimensional non-Newtonian flows. The 
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Figure 9. Time evolution of u, at x M  for the following parameters: E =  m; Re=O.O; cr=&O; c=0.95; p=05;  K=O.O 
(standing wave); De=59.5 (-); De=59.6; (- - -); De=60.0 (......) 

particular problem which was addressed was the non-linear evolution of viscoelastic 
Taylor-Couette instabilities. Two numerical techniques were developed, one applicable for high 
Re and the other for creeping flows, both of which rely on an efficient implementation of 
pseudospectral methods. The principles used are very general and apply to the investigation of 
numerous complex dynamical systems. 

These spectral methods, efficiently implemented through the use of fast numerical solvers, 
proved to be particularly successful for the Taylor-Couette problem, where timedependent 
simulations were sucessfully performed over hundreds of thousands of time steps for a broad 
range of the parameter values. The stability of the Taylor-Couette flow corresponding to three 
different modes, each one being the most unstable one in three distinctive regions in the De-Re 
parameter space, was investigated. In all cases, the bifurcations were found to be supercritical. 
For intermediate values of the elasticity number E ,  the stable branch is that corresponding to 
a wave travelling in the z-direction, with symmetries described by those of a rotating wave. 
However, for large values of E and in the limit of creeping flow, the stable solution branch changes 
form and its symmetries are now described by those of a standing wave. This solution corres- 
ponds to a radially travelling wave. This zero Re bifurcation picture is in agreement with the 
simulations performed by Northey et al.' 

The numerical ability to simulate large non-linear systems dynamically may facilitate investiga- 
tions for higher-order instabilities along the lines of the work of Kevrekidis et ~ 1 . ~ ~  The 
Taylor-Couette flow problem is particularly well suited for study because its solutions are fairly 
smooth and free of any discontinuities or large derivatives!' Caution should be exercised in using 
spectral methods where the expected solution possesses very steep gradients. In this case, one 
should probably use spectral elements, as suggested by Rarnq~ist.~' These methods also have the 
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Figure 10. Dynamic behaviour of the established standing wave solution at four consecutive time snap-shots 
(Figures l q a k  lqd)), showing the streamfunction contourlines, 1/8th of a period apart, corresponding to the parameters 

of Figure 9 for De=60.0. The maximum value of the streamfunction does not change in time 

major advantage of being adaptable to flows within complex geometries. Clearly, more work 
needs to be done along these lines with viscoelastic flow equations. 
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